IDENTIFICATION OF A GENE ENCODING SLOW SKELETAL MUSCLE TROPONIN T AS A NOVEL MARKER FOR IMMORTALIZATION OF RETINAL PIGMENT EPITHELIAL CELLS

Identification of a Gene Encoding Slow Skeletal Muscle Troponin T as a Novel Marker for Immortalization of Retinal Pigment Epithelial Cells

Identification of a Gene Encoding Slow Skeletal Muscle Troponin T as a Novel Marker for Immortalization of Retinal Pigment Epithelial Cells

Blog Article

Abstract Human pluripotent stem cells (hPSCs) are leading candidate raw materials for cell-based therapeutic products (CTPs).In the development of hPSC-derived CTPs, it is imperative to ensure that they do not form tumors after transplantation SORE THROAT SPRAY for safety reasons.Because cellular immortalization is a landmark of malignant transformation and a common feature of cancer cells, we aimed to develop an in vitro assay for detecting immortalized cells in CTPs.We employed retinal pigment epithelial (RPE) cells as a model of hPSC-derived products and identified a gene encoding slow skeletal muscle troponin T (TNNT1) as a novel marker of immortalized RPE cells by comprehensive microarray analysis.

TNNT1 mRNA was commonly upregulated in immortalized RPE cells and human induced pluripotent stem cells (hiPSCs), HMB which have self-renewal ability.Additionally, we demonstrated that TNNT1 mRNA expression is higher in several cancer tissues than in normal tissues.Furthermore, stable expression of TNNT1 in ARPE-19 cells affected actin filament organization and enhanced their migration ability.Finally, we established a simple and rapid qRT-PCR assay targeting TNNT1 transcripts that detected as low as 3% of ARPE-19 cells contained in normal primary RPE cells.

Purified hiPSC-derived RPE cells showed TNNT1 expression levels below the detection limit determined with primary RPE cells.Our qRT-PCR method is expected to greatly contribute to process validation and quality control of CTPs.

Report this page